
Cray XC30 System:
 Overview

Nathan Wichmann
wichmann@cray.com

Outline

10/10/13
2

● Building Blocks

● A new compute node

● Dragonfly Topology

● Network and benchmark performance

Cray XC30 Compute Blade Architecture

3

XC30 Compute Blade

4

Compute
Blade
4 Compute
Nodes

Chassis
Rank 1
Network
16 Compute
Blades
No Cables
64 Compute
Nodes

Group
Rank 2
Network
Passive
Electrical
Network
2 Cabinets
6 Chassis
384 Compute
Nodes

System
Rank 3
Network
Active Optical
Network
Hundreds of
Cabinets
Up to 10s of
thousands of
nodes

Cray XC30 System Building Blocks

5

Cray XC30 Compute node:
Processor and environment

comparison

10/10/13
6

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

DDR3 Channel

6MB L3
Cache

Greyhound
Greyhound
Greyhound
Greyhound
Greyhound
Greyhound

6MB L3
Cache

Greyhound
Greyhound
Greyhound
Greyhound
Greyhound
Greyhound

6MB L3
Cache

Greyhound
Greyhound
Greyhound
Greyhound
Greyhound
Greyhound

6MB L3
Cache

Greyhound
Greyhound
Greyhound
Greyhound
Greyhound
Greyhound H

T3

H
T3

●  2 Multi-Chip Modules, 4 Opteron Dies
●  24 (or 16) Computational Cores, 24 MB of L3 cache
●  8 Channels of DDR3 Bandwidth to 8 DIMMs
●  Dies are fully connected with HT3

XE6 Compute Node Details:
24-core Magny Cours

To Interconnect

HT3	

HT3

HT3

HT3	

7

Cray XC30 Compute Blade Architecture

8

C
O

R
E

0

C
O

R
E

1

C
O

R
E

1
0

C
O

R
E

1
1

30 MB L3
Cache

MAGNY COURS
�  6 cores per die

�  4 die per node
�  Each core has

�  1 user thread
�  1 SSE (vector) functional group

�  128 bits wide
�  1 add and 1 multiply

�  L1 cache size = 32 Kbytes
�  L2 cache size = .5 Mbytes

�  L3 cache, size = 6 Mbytes
�  Cache per core = .5 + 6/6 = 1.5 Mbytes
�  Cache BW per core

�  L1 / L2 / L3 = 35 / 3.2 / 3.2 Gbytes/s
�  Stream TRIAD BW/node = 52 Gbytes/s
�  Peak DP FP per core = 4 flops/clk
�  Peak DP FP per node = 96 flops/clk
� Memory latency = 110 ns

Magny Cours vs Ivybridge: bake-off

9

Ivybridge
�  12 cores per die

�  2 die per node
�  Each core has

�  1 or 2 user threads
�  1 AVX (vector) functional group

�  256 bits wide
�  1 add and 1 multiply

�  L1 cache size = 32 Kbytes
�  L2 cache size = 256 kbytes

�  L3 cache, size = 30 Mbytes
�  Cache per core= 30/8 = 2.5 Mbytes
�  Cache BW per core

�  L1 / L2 / L3 = 100 / 40 / 23 Gbytes/s
� Stream TRIAD BW / Node = 100 Gbytes/s
�  Peak DP FP per core = 8 flops/clk
�  Peak DP FP per node = 480 Gflops
� Memory latency = 82 ns

Sandybridge and Ivybridge
Sandybridge

�  8 cores per die
�  2 die per node

�  Each core has
�  1 or 2 user threads
�  1 AVX (vector) functional group

�  256 bits wide
�  1 add and 1 multiply

�  L1 cache size = 32 Kbytes
�  L2 cache size = 256 kbytes

�  L3 cache, size = 20 Mbytes
�  Cache per core= 20/8 = 2.5 Mbytes
�  Cache BW per core

�  L1 / L2 / L3 = 105 / 42 / 26 Gbytes/s
� Stream TRIAD BW / Node = 77 Gbytes/s
�  Peak DP FP per core = 8 flops/clk
�  Peak DP FP per node = 320 Gflops
� Memory latency = 82 ns

10

Ivybridge
�  12 cores per die

�  2 die per node
�  Each core has

�  1 or 2 user threads
�  1 AVX (vector) functional group

�  256 bits wide
�  1 add and 1 multiply

�  L1 cache size = 32 Kbytes
�  L2 cache size = 256 kbytes

�  L3 cache, size = 30 Mbytes
�  Cache per core= 30/8 = 2.5 Mbytes
�  Cache BW per core

�  L1 / L2 / L3 = 100 / 40 / 23 Gbytes/s
� Stream TRIAD BW / Node = 100 Gbytes/s
�  Peak DP FP per core = 8 flops/clk
�  Peak DP FP per node = 480 Gflops
� Memory latency = 82 ns

Intel NDA Cray Private

Single Stream vs Dual Stream
●  Cray compute nodes booted with hyperthreads always ON
●  User can choose to run with one or two ranks/pes/threads per core
●  Choice made at runtime

●  aprun –n### -j1 … -> Single Stream mode, one rank per core
●  aprun –n### -j2 … -> Dual Stream mode, two ranks per core

●  Default is Single Stream
●  Dual Stream often better if…

●  throughput is more important OR…
●  performance per node is more important OR…
●  your code scales extremely well

●  Single Stream often better if…
●  single job performance matters more
●  per core performance matters most (code does not scale well)

●  Cray ended up running 4 or the 7 “NERSC SSP” codes in dual
stream mode to maximize overall system score

11

Core specialization

12

●  System ‘noise’ on compute nodes may significantly
degrade scalability for some applications

●  Core Specialization can mitigate this problem
●  M core(s)/cpu(s) per node will be dedicated for system work (service core)
●  As many system interrupts as possible will be forced to execute

on the service core
●  The application will not run on the service cpus

●  Use aprun -r to get core specialization
 $ aprun –r[1-8] –n 100 a.out
●  Highest numbered cpus will be used

●  Starts with cpu 31 on Sandybridge nodes
●  Independent of aprun –j setting
●  apcount provided to compute total number of cores required

 man apcount

Running with OpenMP and the Intel PE

10/10/13
13

● An extra thread created by the Intel OpenMP runtime
interacts with the CLE thread binding mechanism and
causes poor performance

●  To work around this issue cpu-binding should be turned off
●  Allows user compute threads to spread out over available resources
●  Helper thread will no longer impact performance

● Note: This is only an issue for running OpenMP programs

that were compiled and linked with the Intel compiler

Examples of using MPI and OpenMP with Intel PE

10/10/13
14

● Running when “depth” divides evenly into the number of
“cpus” on a socket
export OMP_NUM_THREADS=“<=depth”
aprun -n npes -d “depth” -cc numa_node a.out

● Running when “depth” does not divide evenly into the
number of “cpus” on a socket
export OMP_NUM_THREADS=“<=depth”
aprun -n npes -d “depth” -cc none a.out

●  Take into account –j1 vs –j2
●  These “-cc” options turn off cpu binding

●  Your process/thread may switch cores in the middle of execution

● Would LOVE to see a comparison of performance between
shutting off binding and forcing binding

Cray XC30 Dragonfly
Topology

10/10/13
15

Cray XC30 Network

●  The Cray XC30 system is built around the idea of optimizing
interconnect bandwidth and associated cost at every level

Rank-1
PC Board: ¢¢¢

Rank-2
Passive CU: $

Rank-3
Active Optics: $$$$

16

Cray XC30 Rank1 Network

o  Chassis with 16 compute blades
o  128 Sockets
o  Inter-Aries communication over

backplane
o  Per-Packet adaptive Routing

10/10/13
17

16 Aries connected
by backplane

“Green Network”

Cascade – Local Electrical Network

10/10/13
18

4 nodes
connect to a
single Aries

6 backplanes
connected with

copper cables in a 2-
cabinet group:

“Rank-2 Network”

Active optical
cables interconnect

groups
“Rank-3 Network”

2 Cabinet
Group

768 Sockets

Cray XC30 Rank-2 Cabling

● Cray XC30 two-
cabinet group
●  768 Sockets
●  96 Aries Chips

19

Cray XC30 Adaptive Routing

20

S

D

With adaptive routing
we select between
minimal and non-
minimal paths based
on load

The Cray XC30
Class-2 Group has
sufficient bandwidth to
support full injection
rate for all 384 nodes
with non-minimal
routing

M

Minimal route
between any two

nodes in a group is
just two hops

Non-minimal route
requires up to four

hops.

R M

M

● Adaptive routing allows the Cray XC network to
handle a diverse set of traffic patterns at full speed
●  Significant advantage over Infiniband on real traffic patterns

Cray Proprietary

Cray XC30 – Rank-3 Network

●  An all-to-all pattern is wired between the
groups using optical cables (blue
network)

●  The global bandwidth can be tuned by
varying the number of optical cables in
the group-to-group connections

Example: A 7-group system is interconnected with 21 optical “bundles”. The “bundles”
can be configured between 2 or more cables wide, subject to the group limit.

Group 0 Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

10/10/13
21

Adaptive Routing over the Blue Network

22

●  An all-to-all pattern is
wired between the groups

Group 0

Group 1

Group 2

Group 3 Group 4

Assume	
 Minimal	
 path	

from	
 Group	
 0	
 to	
 3	

becomes	
 congested	

Traffic	
 can	
 “bounce	

off”	
 any	
 other	

intermediate	
 group	

Doubles	
 load	
 on	
 network	
 but	

more	
 effec>vely	
 u>lizes	
 full	

system	
 bandwidth	

Why use Huge Pages?

23

●  On edison huge pages are a performance enhancement
●  On hopper hugepages were a functional requirement for some codes

●  The Aries may perform better with HUGE pages than with 4K pages.
●  HUGE pages use less Aries resources than 4k pages
●  More important when remotely access large percentage of nodes memory in an

irregular manner
●  Large AlltoAll
●  AMO GUPS

●  Still be watchful for memory page fragmentation
●  Might still get “cannot run errors” because it cannot find enough large hugepages

●  Use modules to change default page sizes (man intro_hugepages):
●  e.g. module load craype-hugepages#

●  craype-hugepages2M
●  craype-hugepages8M
●  craype-hugepages16M
●  craype-hugepages32M

MPI Latency and Bandwidth

10/10/13
24

Multipong Benchmarks

Test Description Measured Units

Maximum Inter-Node Latency Single-Core,
Farthest-node pair (1) 1.920 µsecs

Minimum Inter-Node Latency Single-Core,
Nearest-node pair (2) 1.498 µsecs

Maximum Intra-Node Latency Single-Core,
cross socket (3) 0.545 µsecs

Minimum Intra-Node Latency Single-Core,
same socket (4) 0.267 µsecs

Maximum Inter-Node Latency Fully-packed
Nodes, Farthest-node pair (5) 2.452 µsecs

Maximum Inter-Node Latency Fully-packed
Nodes, Nearest-node pair (6) 2.027 µsecs

Maximum Bandwidth Multi-Core Nearest
Nodes (7) 9255 MB/s

Point-to-Point Aries vs. Gemini

Typical Point-to-point bandwidth
Case Gemini Aries

(GB/s) (GB/s)
“On Gemini/Aries” ~5 ~8-10
“Long Range” ~1.5-3 ~8-10

Cray Inc. Proprietary – Not For Public Disclosure

(25)

§  Long Range transfers on Aries will be able to adapt around any
hot spots in the network and continue at full speed

§  Maximum latency will be much lower on Aries

Optical network rarely limiting factor in real life

10/10/13 Cray Inc. Confidential
26

● Most traffic patterns will be limited by the sustained
injection bandwidth
●  Sustained injection bandwidth is in the 3-6 Gbytes/sec range
●  Nearest Neighbor communication mostly stays on-group

● Examples of optical bound benchmarks
●  Full system alltoall with <50% of optical cables connected
●  Pure bi-section bandwidth tests, but that is not common in real codes
●  Global bandwidth intensive codes that are packed into just a few groups

●  Seems unlikely to occur in production

●  Less then full system runs are unlikely to be optical limited

● Communication intensive applications are more likely to be
injection bandwidth bound rather than network bound
●  Consider optimization that maximize on-node traffic and minimize off-

node traffic

Additional Network test

10/10/13
27

● MPI_ALLTOALL
●  Dmapp optimization during communication in available under 6.0

●  MPICH_USE_DMAPP_COLL = 1
●  Measured ~ 9 Tbytes / second of global bandwidth

●  Very good performance for this configuration

● MPI Barrier / Allreduce – excellent scaling with dmapp
version

●  Initial conclusions:
●  High speed network is healthy and performing well.
●  Full system performance is very good.
●  Adaptive routing working very well (as designed).

Placement Strategies impact on 3D stencil

10/10/13
28

●  Run on 14 copies of a 3D stencil code
simultaneously on a 28 cabinet
system with partial optical network

●  Spread Allocation w/ Natural
Placement
●  Spread across the machine
●  “Naturally” fill your portion of the group

before moving on to the next group
●  Preserves some spatial locality while still

spreading out the job

●  Randomized Node
●  Spread across the machine
●  No spatial locality

●  “Packed Group” fills a cabinet before
moving on to the next cabinet
●  Maximizes on-group traffic

●  Conclusions
●  Natural placement a good idea
●  Don’t destroy spatial locality
●  Pack Group slightly better, but

performance is not hurt significantly if job
gets spread out

73.80

80.61

73.31

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Spread Allocation w/
Natural Placement

Randomized Node Packed Group /
Natural Placement

Se
co

nd
s

Placement Strategy

Walltime of 3D stencil code using
different placement strategies

Near perfect scaling of MILC

10/10/13
29

0

50

100

150

200

250

300

350

400

8192 16384 24576 32768

Se
co

nd
s

Number of Cores

MILC Weak Scaling Test on 12 cab with quarter optical
network

● MILC does a 4D Nearest Neighbor Halo exchange
●  Cause significant network contention on a 3D torus
●  Significant amounts of traffic stays on group
●  Also sets up patterns were all off-group traffic goes to one other group
●  Would only work well if adaptive routing was working well

Summary

10/10/13
30

● On-node
●  24 cores per node on edison; similar to hopper

●  Edison has new –j1 vs –j2 (hyperthreading) feature
●  Edison has ~2X the bandwidth of hopper per node
●  Intel compiler now available

● Network
●  Edison has improve injection bandwidth over hopper
●  Edison has a greatly improved network bandwidth

●  Global bandwidth is significantly higher
●  Adaptive routing minimizes hot spots
●  Better scaling
●  Less job-job interference

●  Communication intensive applications more likely to be injection
bandwidth bound rather than network bound

● Overall application performance should be significantly
improved compared to hopper

The End

